skip to main content


Search for: All records

Creators/Authors contains: "Hall, Kimberly R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The conservation field is experiencing a rapid increase in the amount, variety, and quality of spatial data that can help us understand species movement and landscape connectivity patterns. As interest grows in more dynamic representations of movement potential, modelers are often limited by the capacity of their analytic tools to handle these datasets. Technology developments in software and high-performance computing are rapidly emerging in many fields, but uptake within conservation may lag, as our tools or our choice of computing language can constrain our ability to keep pace. We recently updated Circuitscape, a widely used connectivity analysis tool developed by Brad McRae and Viral Shah, by implementing it in Julia, a high-performance computing language. In this initial re-code (Circuitscape 5.0) and later updates, we improved computational efficiency and parallelism, achieving major speed improvements, and enabling assessments across larger extents or with higher resolution data. Here, we reflect on the benefits to conservation of strengthening collaborations with computer scientists, and extract examples from a collection of 572 Circuitscape applications to illustrate how through a decade of repeated investment in the software, applications have been many, varied, and increasingly dynamic. Beyond empowering continued innovations in dynamic connectivity, we expect that faster run times will play an important role in facilitating co-production of connectivity assessments with stakeholders, increasing the likelihood that connectivity science will be incorporated in land use decisions. 
    more » « less
  2. Abstract

    There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well‐positioned to inform the development of evidence‐based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long‐term persistence of species.

     
    more » « less